
Elixir: The Superior Platform for
AI-Powered Software Engineering — A
Comprehensive Analysis

Researcher: GPT Deep Research, Editor: Matthew Sinclair
(hello@matthewsinclair.com)

Abstract:

This paper presents a comprehensive analysis supporting the proposition that Elixir is a
superior platform for modern, AI-assisted software engineering. We examine technical,
process, and people factors that differentiate Elixir from mainstream technology stacks
(Node.js, Python, Go, etc), and explore how Elixir’s language design and ecosystem align
uniquely well with the emerging landscape of AI-driven development. We provide
architectural insights into core frameworks (Phoenix, LiveView, Ash, Nx) and critically
compare the “vibe coding” approach – building software by prompting AI with minimal
engineering rigor – against Elixir’s disciplined, engineering-first methodology. Finally, using
the “make it work, make it right, make it fast” framework, we critique the shortcomings of
prototype-first, vibes-driven workflows and demonstrate how Elixir enables teams to achieve
all three: initial productivity, long-term correctness, and high performance.

Notes on LLM Collaboration:

This paper was created as a collaboration between GPT Deep Research and Matthew Sinclair
(hello@matthewsinclair.com). No humans or animals were harmed in the process, but many
tokens were burned.

Introduction
Software engineering is undergoing a seismic shift with the rise of large language models
(LLMs) and AI-assisted development tools. Terms like “vibe coding” have entered the lexicon,
describing a style of programming where one “fully give[s] in to the vibes… and forget[s] that the
code even exists” – in other words, trusting AI to generate entire codebases from natural
language prompts. Advocates claim this approach enables unprecedented development
speed and accessibility for non-engineers. However, critics highlight severe risks: lack of
human oversight can lead to fragile, unmaintainable code and security vulnerabilities

af://n847
https://openai.com/index/introducing-deep-research/
mailto:hello@matthewsinclair.com
af://n848
https://openai.com/index/introducing-deep-research/
mailto:hello@matthewsinclair.com
af://n856

[STEPHANE2025]. Even Andrej Karpathy, who coined “vibe coding,” acknowledged that
current AI tools often can’t truly understand or fix bugs, making the technique “not too bad
for throwaway weekend projects” but problematic for serious software [WIKI2025].

In this context, choosing the right technology stack becomes critical. If AI can help us “make it
work” quickly, we as engineering leaders must still ensure we “make it right” and “make it
fast.” This paper argues that Elixir – a functional, concurrent language built on the battle-
tested Erlang VM – is uniquely suited to meet that challenge. Elixir’s design emphasizes
correctness, scalability, and maintainability from the start, providing an engineering-
focused discipline that acts as a counterweight to the laissez-faire prototype generation of
vibe coding. At the same time, Elixir’s high-level frameworks and clear semantics align
extraordinarily well with AI assistance, enabling high leverage for developers without
sacrificing reliability.

We will delve into:

Technical Advantages: How Elixir’s concurrency model, fault-tolerance, and unified
web stack outperform mainstream stacks in the era of AI-scale workloads.

Process and Productivity: How Elixir (with frameworks like Phoenix, LiveView, Ash, Nx)
enables smaller teams to move fast and right, reducing complexity and external
dependencies – a stark contrast to prototype-first “just ship it” cultures.

People Factors: The nature of the Elixir community and talent pool, and why Elixir
teams often have higher alignment and retention. We examine why developers love
working with Elixir [HILAL2023] and how that translates into long-term team
productivity.

AI Alignment: Why Elixir’s language characteristics (functional purity, immutability,
explicitness) make it easier for LLMs to generate correct code [DANIEL2025], and how
new tools (e.g. Ash’s LLM integration guidance [DANIEL2025]) are positioning Elixir as an
AI-native ecosystem.

Vibe Coding vs Discipline: A critical comparison of AI-driven “vibe coding” platforms
(e.g. Lovable.dev, Apidog) with Elixir’s engineering-first approach. We use the classic
“make it work, make it right, make it fast” framework to show where vibe coding
falls short and how Elixir empowers teams to achieve all three stages iteratively.

Case Studies: Real-world evidence of Elixir’s strengths, including how WhatsApp,
Discord, and others achieved massive scale and uptime with minimal resources by
leveraging the Erlang/Elixir platform [HOFF2014], [VISHNEVSKIY2017], [BATRA2025].

The audience for this analysis includes CTOs and technical VPs evaluating strategic
technology choices, senior engineers looking for robust solutions to modern challenges, and
even non-technical managers who need a high-level understanding of why Elixir could be a
competitive advantage. We balance detailed technical discussion with accessible

explanations to ensure each stakeholder gains insight.

1. Technical Advantages of Elixir in the AI Era

1.1 Concurrency, Scalability, and Fault Tolerance by
Design

Modern software – especially AI-powered services – must handle enormous loads and
parallelism (e.g. serving thousands of concurrent users or orchestrating many microservices
and model inference tasks). Elixir’s runtime excels at this out of the box. The Erlang VM
(BEAM) was explicitly designed for massive concurrency and distributed operation in telecom
systems. It provides lightweight process spawning (millions of processes can run
simultaneously) and preemptive scheduling, so no single task can hog the CPU . Each Elixir
process is isolated with its own heap and garbage collector, meaning one failing process
won’t crash others and pauses are minimal – a stark contrast to languages with a global
interpreter lock or single-threaded event loop.

By leveraging these features, systems built on Elixir achieve feats of scale that are extremely
hard to replicate in other ecosystems. For example, WhatsApp (built on Erlang, which Elixir
runs on) was able to handle 42 billion messages a day with just 50 engineers, including 1.6
million concurrent connections per server, while maintaining 99.9% uptime [HOFF2014].
This was possible because the BEAM’s concurrency and fault-tolerance let a tiny team
manage infrastructure serving 900 million users without catastrophic failures. Similarly,
Discord adopted Elixir for its chat backend and scaled to nearly 5 million concurrent users
and many millions of events per second with no regrets about their choice – Elixir’s model
proved “the perfect candidate” for a high-scale real-time system [VISHNEVSKIY2017]. In fact, a
single Elixir/Phoenix server can handle millions of long-lived WebSocket connections (a
Phoenix proof-of-concept demonstrated 2 million simultaneous sockets on one machine)
[RENNIE2015], showcasing how the runtime’s capacity far exceeds typical needs.

Crucially, this scalability comes without complex user-land threading or async code. In
Node.js, achieving high concurrency means carefully managing an event loop and async
callbacks (and still being limited by one core per instance unless clustering). In Python, one
might reach for async libraries or multiprocessing to sidestep the Global Interpreter Lock
(GIL), adding complexity and still not matching BEAM’s lightweight process count. Go’s
goroutines are the closest competitor in concurrency, but Go lacks some of Erlang/Elixir’s
safety net: if a goroutine crashes, it can bring down the whole program unless errors are
manually handled everywhere. By contrast, Elixir’s philosophy is “let it crash” – processes
are expected to fail sometimes, and supervisors will automatically restart them, keeping the
system as a whole resilient. Fault tolerance isn’t an afterthought; it’s a core feature. As one
engineering lead put it, Elixir’s platform provides “supervisors and fault tolerance baked into the

af://n875
af://n876

runtime” , so you don’t need an external orchestrator to achieve self-healing behavior.

This robustness means that engineers using Elixir can trust the infrastructure to handle low-
level concerns (process scheduling, restarts, load balancing across CPU cores, etc.), and focus
on higher-level logic. In essence, Elixir gives you a massively concurrent, self-healing
distributed system “for free.” The result is less boilerplate (no manual thread pools, no
circuit-breaker libraries needed – the VM handles it) and fewer catastrophic outages. For AI-
powered systems, which may involve many parallel data processing tasks or real-time
streaming to users, this reliability under load is invaluable.

1.2 Performance and Efficiency

While Elixir is not a low-level language, it achieves impressive performance characteristics for
I/O-heavy and highly concurrent workloads. The example of WhatsApp above – millions of
connections on modest hardware – highlights how efficiently BEAM uses resources. Each
Elixir process is extremely lightweight (far lighter than an OS thread), and message passing
between processes is optimized by the VM. Moreover, BEAM’s scheduler can span across all
CPU cores, maximizing parallel use of multi-core processors without the developer needing
to write special code. This is a sharp contrast to certain mainstream environments: for
instance, Python’s default interpreter can only use one CPU core at a time for bytecode
execution (due to the GIL), and Node.js also runs JavaScript on a single thread, requiring
separate worker processes to utilize additional cores.

Elixir’s ability to scale vertically (using all cores effectively) and horizontally (clustering across
nodes) means you can often serve more users with less hardware. As an anecdote, one high-
scale Erlang system boasted 40 million users per engineer and millions of messages per
second, in part because “running efficiently on SMP machines” kept the server count low and
operational complexity down [HOFF2014]. The cost savings of such efficiency can be
significant for a business, and the predictable latency under load (thanks to preemptive
scheduling) can translate to better user experiences. In the context of AI, where an
application might make many concurrent calls to a machine learning model or handle
streaming data, Elixir’s throughput ensures the pipeline doesn’t become a bottleneck at the
application layer.

It’s worth noting that for pure number-crunching performance (e.g. heavy linear algebra,
training ML models), Elixir now interoperates with native C/C++ and GPU code via Nx (see
Section 1.5). This means computationally intensive parts can be JIT-compiled to high-speed
executables, while Elixir orchestrates and serves results concurrently. In summary, Elixir gives
a rare combination of developer-friendly high-level code with under-the-hood efficiency, which is
crucial for modern AI-enabled services that must handle both complexity and scale.

af://n882

1.3 Unified Web Stack (Phoenix and LiveView)

In a traditional web application stack, especially for real-time features, one often ends up
stitching together multiple layers: a backend framework (Express for Node, Django/Flask for
Python, etc.), a separate frontend (React/Angular/Vue SPA for rich interactivity), perhaps a
message broker (Redis, Kafka) for background jobs or WebSocket pub/sub, and assorted glue
for state synchronization (client-side state management, API endpoints, etc.). This multi-
layered complexity can slow development and introduce many points of failure or
inconsistency (e.g. mismatches between client and server validation, complex deployment
pipelines for separate services).

Phoenix, Elixir’s flagship web framework, takes a radically simpler approach by collapsing
much of this complexity into one coherent system. It’s often touted as the “glass-to-tin”
framework, covering everything from the browser glass UI to the server metal . With
Phoenix, you get a high-performance HTTP server, real-time communication channels,
template rendering, and more, all in one package that plays to Elixir’s strengths (for example,
each WebSocket connection is handled by an isolated process, making it trivial to support
thousands of concurrent live users).

The game-changer is Phoenix LiveView, which allows developers to build rich, interactive
user interfaces without writing separate JavaScript single-page applications. LiveView keeps the
logic on the server: you write Elixir code that generates HTML, and it automatically diffs and
pushes updates to a persistent WebSocket-connected client. This means features like live
form validation, dynamic updates, notifications, etc., can be implemented entirely in Elixir,
with the framework handling efficient client updates. The result is that many applications
that would have required an API + frontend can now be delivered as a single Elixir application
with real-time features. Teams avoid the overhead of maintaining “three separate frontends”
or coordinating across multiple teams for web, iOS, Android, etc. – a small Elixir/Phoenix
team can deliver end-to-end .

For AI-powered apps, LiveView’s model is particularly appealing. Consider an app that uses
an LLM to assist content creation: using LiveView, the developer can maintain the
conversation state and prompt logic on the server and stream updates to the UI seamlessly.
There’s no need to implement a custom WebSocket protocol and separate front-end state
management – Phoenix does it. This lowers the barrier to adding AI features since developers
only need to be fluent in one environment (Elixir) rather than a polyglot of languages and
frameworks.

Moreover, the reduced surface area (one language, one framework) means fewer bugs and
edge cases. There’s no worrying about mismatched data models between front and back
end, and no client-side race conditions to manage when the source of truth is on the server.
For CTOs, this coherence can translate to smaller, more focused teams and faster iteration.
It’s a people advantage born from a technical choice: fewer moving parts in the stack reduce

af://n887

coordination overhead.

1.4 Declarative, High-Leverage Coding with Ash

If Phoenix/LiveView streamlines the web layer, the Ash Framework tackles the application
and data layer with a declarative approach. Ash is an Elixir framework that allows engineers
to define their application’s domain (resources, data models, actions, policies) in a high-level,
declarative DSL. From these definitions, Ash generates a tremendous amount of boilerplate
and plumbing automatically. It’s been described as “the game-changing toolkit for Elixir
developers” that “slashes development time, effort, and complexity, letting you do more with less
code.” [LE2025].

Essentially, Ash provides plug-and-play building blocks for common back-end needs. Want
a REST or GraphQL API for your data? Define your resources and relationships, and Ash can
generate those endpoints for you (with things like pagination, sorting, and filtering handled).
Need role-based authorization? Declare some policies, and Ash will enforce them across
every access path consistently. Writing an internal admin tool? Ash’s definitions can be used
to scaffold out an interface or ensure your business rules are uniformly applied.

The benefit in an AI-era context is twofold:

Massive Productivity Boost: Using Ash can be seen as analogous to using AI to
generate boilerplate – except it’s deterministic and based on a schema you control.
Engineers focus on “what to build, instead of how,” as the Ash authors put it [LE2025].
This means a small team can deliver features that would normally require many lines of
repetitive code. In a sense, Ash is a form of high-level automation, so even before
adding any AI assistance, it yields “AI-like” productivity (high leverage). And when you do
add AI coding assistance to the mix, the structured nature of Ash’s DSL means an LLM
can more easily help fill in or modify resource definitions (since it’s working with a
constrained, high-level language). One community member noted that “Ash’s declarative
model makes it perfect to generate high quality code using LLM”, giving an even faster
starting point for products [DANIEL2025].

Consistency and Correctness: Unlike a traditional code generation or quick prototype
which might produce inconsistent code, Ash ensures that there is a single source of
truth for logic like validations or relationships. This addresses the “make it right” part of
the mantra. If you rely purely on an AI to scaffold an app in, say, Node.js or Python, you
might end up with a mishmash of patterns and potentially shaky glue code. Ash imposes
a coherent architecture. It’s opinionated in a good way – for instance, you won’t
accidentally forget to enforce a business rule on one code path, because Ash centralizes
those rules. The fact that Ash is declarative also aligns with how one would describe
requirements to an AI or to another developer: you talk in terms of what you want (e.g.

af://n894

“A User has many Orders, an Order has a total price that is automatically calculated, and
only admins can cancel an Order”), and Ash lets you express exactly that. Internally it
then ensures the how (database operations, enforcement, etc.) is done correctly.

For technical leaders, adopting Ash can mean that even a novice Elixir developer (or an AI
assistant) can be productive quickly, because they are guided by the framework’s patterns. It
reduces the “foot-guns” and mysteries in the codebase. And because it’s built in Elixir, it
inherits the runtime’s benefits – you can use Ash alongside Phoenix and LiveView, and even
Nx, in one seamless system. In essence, Ash exemplifies “high-leverage code” : it’s not about
removing coding (as some “low-code” platforms do), but about maximizing the impact of the
code you do write. This approach is particularly well-suited to AI-assisted development,
where you want the AI’s output to be as meaningful and correct as possible. Operating at a
higher abstraction (with frameworks like Ash) means the AI is orchestrating bigger building
blocks rather than micromanaging low-level details, which tends to yield more reliable
results.

1.5 Elixir for AI and ML: Nx, Axon, and Beyond

One might ask: in a world of Python-dominated machine learning, how does Elixir fit in?
Historically, Python has been the language for AI research and model development due to
libraries like TensorFlow and PyTorch. However, Elixir has been rapidly closing that gap for
the production side of AI and even for certain development workflows, thanks to the Nx
project and its ecosystem.

Nx (Numerical Elixir) is a library that brings multi-dimensional arrays (tensors) and advanced
numerical computation to Elixir . It was directly inspired by Python’s NumPy and Google’s JAX,
and crucially it offers multi-staged compilation of numeric code to CPU or GPU. In practice,
this means Elixir code using Nx can be just-in-time compiled to optimized native code
(leveraging the XLA compiler, which is also under the hood of TensorFlow). Nx also supports
distribution across nodes and multiple GPUs . The Elixir community didn’t stop at Nx: they’ve
built Axon, a high-level neural networks library (analogous to Keras or PyTorch’s high-level
API) on top of Nx , and Explorer for dataframes (wrapping Rust’s Polars engine for fast data
manipulation) , among other tools. There’s even Livebook, an innovative notebook
environment for Elixir, which supports “smart cells” for things like data visualization or model
training, bringing a Jupyter-like interactive experience to Elixir with some unique features
(collaboration, etc.) .

For engineering leadership, the emergence of Nx means that an Elixir-based team can
potentially unify their tech stack: the same language and platform can be used for web/API
development and for serving ML models or doing real-time data processing. José Valim
(Elixir’s creator) described the goal as “marry the power of numerical computing with the Erlang

af://n905

VM capabilities for building concurrent, scalable, fault-tolerant systems.” This is a compelling
vision. In practical terms, it means you could have, say, a Phoenix web app that includes an
Axon neural network for, perhaps, sentiment analysis or recommendation, and that model
can be trained or updated in production without calling out to a Python microservice. The
latency benefits of co-locating ML inference with your app can be significant (no cross-
service RPC overhead). And operationally, it’s simpler to monitor and maintain one system
rather than two or three different services written in different languages.

Elixir’s approach to ML is also modern: by using a compiler approach (like JAX), it sidesteps
some of Python’s performance issues and embraces a functional style that fits Elixir.
Immutability, often a concern for numerical work due to copying overhead, is mitigated by
Nx’s strategy of building computation graphs and then executing them efficiently (so you get
the benefits of functional clarity while the runtime still mutates under the hood for speed) .

For AI-assisted software engineering, having ML capabilities in Elixir means your AI features
integrate naturally. Consider an AI-assisted coding platform scenario: an Elixir system could
orchestrate prompting an LLM (perhaps via an external API or an on-premise model), do data
crunching with Nx on the results, and serve a real-time UI via LiveView – all in one coherent
codebase. This eliminates the typical glue code needed when mixing Python ML backends
with web frontends.

In summary, the Nx and related efforts future-proof Elixir in an AI-heavy world. They ensure
that choosing Elixir doesn’t mean giving up on machine learning capabilities – on the
contrary, it opens the door to leveraging them with better concurrency and reliability. As AI
models move toward production and need to be served to users 24/7, Elixir’s fault-tolerance
and hot upgrading (you can update a model in memory without downtime using BEAM’s hot
code swap) could prove to be a strategic advantage.

2. Process and Workflow Advantages
Beyond raw technical features, Elixir influences how teams work. A critical aspect of being
“superior for modern software engineering” is enabling better processes: faster development
cycles, fewer defects, easier maintenance, and smoother operations. We examine how Elixir’s
ecosystem and philosophy lead to improved processes, especially in contrast to the fast-and-
loose prototyping culture that AI code generation might encourage.

2.1 “Make It Work, Make It Right, Make It Fast” – All in
One Flow

af://n913
af://n915

The classic engineering mantra “make it work, make it right, make it fast” suggests an
iterative approach: first build a functioning prototype, then refactor for cleanliness and
correctness, then optimize for performance. Many common stacks almost force a hard break
between these stages. For instance, a startup might quickly prototype an app in Python or
JavaScript to make it work, but as usage grows, they find it’s not right (maybe it’s buggy or
hard to maintain) and certainly not fast at scale – leading them to consider a rewrite in a
more performant language or adding a lot of additional infrastructure (caches, message
queues, container orchestration) to patch over deficiencies. This context switching (both in
technology and mindset) is expensive. It’s also the scenario in which AI-generated code, if
used naively (vibe coding), could drop a team into a pit of technical debt: the AI can crank out
something that works, but making it right might require a near rewrite anyway if the
foundation is poor.

Elixir stands out by enabling engineers to hit all three goals more continuously. You can build
a quick prototype in Elixir that works – thanks to rapid frameworks like Phoenix and Ash
generators – and that prototype is often already right in many ways because the framework
enforced good patterns. For example, a Phoenix app generated with mix tasks will have a
proper supervision tree, logging, and testing tools set up from the start. The code to handle a
WebSocket connection or a background job is not a one-off script, but built using OTP
principles (supervised, monitored). This encourages what one might call disciplined
prototyping: you move fast but within a structure that naturally leads to correct and
maintainable outcomes.

When it comes to “make it fast,” Elixir often needs less explicit optimization effort at the
application level because the runtime has already taken care of a lot of performance
concerns (see Section 1.2 on using all cores, etc.). Many teams find that a web app in Elixir
can handle an order of magnitude more load than an equivalent in a slower runtime, before
any performance tuning is needed [VISHNEVSKIY2017]. And if you do need to optimize, Elixir
provides powerful tools like concurrency primitives (which can be used for parallelizing work
easily) and profiling/monitoring out of the box (Observer, telemetry). So performance tweaks
rarely require architectural overhauls – you typically won’t hit the kind of wall that forces a
ground-up rewrite in another language.

In contrast, vibe coding (as per Karpathy’s extreme example) tends to prioritize “make it
work” and maybe “make it fast” (the AI might generate seemingly efficient code or use fast
libraries), but utterly neglects “make it right.” Karpathy’s description of vibe coding includes “I
‘Accept All’ always, I don’t read the diffs anymore… The code grows beyond my usual
comprehension… Sometimes the LLM can’t fix a bug so I just work around it or ask for random
changes until it goes away.” [WIKI2025]. This is basically the antithesis of “make it right” – it’s
knowingly skipping that step. The result might work today, but tomorrow when requirements
change or an edge-case bug appears, the lack of understanding and clean structure makes it
a nightmare to fix. By ensuring that even initial versions of the system are built on solid
ground, Elixir reduces the chance you’ll have to throw one version away and start over.

2.2 Reduction of Accidental Complexity

Accidental complexity refers to the bloat and complication introduced not by the problem
itself, but by the tools and infrastructure around it. Many modern stacks accumulate a lot of
this complexity. For example, take a typical microservices architecture in a large enterprise:
you might have dozens of services, each with its own configs, possibly written in different
languages (a Node service calling a Python service, etc.), containers for each, an orchestrator
like Kubernetes to manage them, separate caching layers, queue systems for background
tasks, etc. Over time, the overhead of managing these pieces can dwarf the core business
logic. It’s no wonder that deploying updates or debugging issues becomes slow and error-
prone in such environments.

Elixir encourages a different path: do more with less. Because an Elixir application can
handle many roles within one runtime (web server, background job processor, real-time
notifier, etc.), you can often consolidate what would be multiple services into a single
deployment. For example, instead of having a separate Redis or RabbitMQ just for a job
queue, many Elixir projects use Oban, an in-process job scheduling library that leverages
Postgres for persistence and is part of the Elixir app itself . It’s one less moving part and yet
highly reliable (Oban uses database transactions to guarantee jobs run exactly once, etc.).
Similarly, need rate limiting or backpressure? In Elixir, you might just use GenStage or
Broadway to build a pipeline that naturally meters throughput , rather than deploying an
external rate-limiter service.

The blog summary in the first part of this document listed several things you “don’t need to
worry about with Elixir.” To highlight a few:

Orchestration (Kubernetes): Because Elixir nodes can form clusters and distribute
work across themselves, and supervisors restart crashed processes, the application is
effectively providing a lot of what Kubernetes would at the container level . Many Elixir
teams run their systems on relatively simple infrastructure (VMs or containers with a
basic runner) without the full complexity of k8s, unless other requirements demand it.
Fewer layers means deployments are simpler and there are fewer failure modes.

Monitoring/Introspection: The BEAM comes with built-in observability – you can open
a live view of the running system (Observer) to inspect processes, memory usage, etc.,
even in production. And libraries like LiveDashboard (bundled with Phoenix) give a quick
web UI for metrics, request logs, etc. This means you don’t have to bolt on as many
third-party monitoring agents just to understand your system’s behavior . It’s a big win
for operational simplicity.

Build and Dependency Management: Elixir’s mix tool and Hex package manager are
very straightforward and consistent. You typically don’t encounter the dependency hell
of NPM (with its transitive dep conflicts and frequent security issues) or the heavy
enterprise build systems of Java. This makes continuous integration and delivery

af://n923

pipelines easier to maintain – builds are fast and reproducible. The time saved here is
time that can be spent actually coding features or improving quality.

All these reductions in accidental complexity mean that teams can iterate faster and with
more confidence. When an AI assistant is part of development, having less infrastructure in
play also helps the AI focus on the actual code. For instance, an AI coding assistant tasked
with adding a feature in an Elixir project deals with one cohesive codebase. In a polyglot
microservices setup, the same task might involve editing multiple repos in different
languages and updating config in a deployment pipeline – more chances for error.

An illustrative comparison: Suppose you want to implement real-time notifications in your
product (when some event happens, all online users get an update). In a typical Node/React
stack, you might need: an API endpoint for the event producer service, a message broker (like
Kafka or Redis pub/sub) to fan out messages, a WebSocket gateway service to push to clients,
and corresponding client-side logic to connect and handle messages. In Elixir/Phoenix, you
could implement this in one Phoenix app using Phoenix Channels or LiveView – the server
pushes to a topic and all subscribed clients get it, handled by Phoenix’s built-in pub-sub
(which can distribute across a cluster). No separate broker needed in many cases; Phoenix’s
PubSub can use PG2 or other adapters to broadcast in a cluster. Fewer components, less
config, less latency, and one language end-to-end. That’s lower accidental complexity in
action.

2.3 Testing and Refactoring Culture

Elixir, by virtue of being a functional language with immutability and pure functions, tends to
encourage good testing practices. Elixir’s standard library includes ExUnit for unit testing and
even supports property-based testing (via StreamData) and lightweight mocking (through the
use of explicit behaviours and test-specific implementations). Many Elixir developers follow a
pattern of writing lots of pure functions (easy to test) and confining side-effects (like I/O or
database calls) to well-defined modules. This means that a significant portion of the
codebase is inherently testable without elaborate test harnesses.

Why is this important in our comparison? Because AI-assisted development can introduce
subtle bugs, and having a robust test suite is a safety net. If you use an LLM to generate a
chunk of code, you want to know quickly if it breaks any assumptions. Elixir’s fast compile
and test cycle (thanks to the speed of the mix build tool and no lengthy static type checks to
recompile everything) makes it feasible to run tests frequently. Additionally, Elixir’s error
messages and interactive IEx (Elixir’s REPL) are great for troubleshooting when something
goes wrong. The language’s design (pattern matching, explicit nil handling, etc.) catches a lot
of issues early – for example, if an AI accidentally produces a function clause that doesn’t
handle a certain pattern, tests will surface a match error, which is quite straightforward to
diagnose.

af://n936

In contrast, a dynamic language like JavaScript or Python, while also very testable, often sees
projects skimp on testing due to time or cultural pressures, and the lack of a compiler means
more bugs slip through to runtime. If AI coders are pumping out code, having strong tests is
the only way to trust that code. Elixir’s community has a strong testing culture; it’s common
to see even small libraries with thorough test coverage. And thanks to immutability, tests
don’t have to worry about some global state being mutated unexpectedly (a common source
of flakiness in other languages).

Refactoring, which is “make it right” stage, is also relatively stress-free in Elixir. Since data is
immutable and functions have no side-effects by default, you can reorganize code (split
functions, move modules around) with less fear of breaking hidden couplings. The fact that
the language is also expressive (drawing some inspiration from Ruby’s clarity) means
developers can actually enjoy cleaning up code – it’s not an arduous task fighting a verbose or
rigid syntax.

From a process standpoint, this encourages iterative improvement. An AI might help crank
out an initial implementation, but an Elixir developer can then easily tidy it up, confident that
if something does break, tests and supervisors will catch it. Over time, the codebase remains
clean and maintainable, supporting continuous delivery.

2.4 DevOps and Operations Simplification

When running software in production, especially software that’s continually evolving with AI-
driven changes or rapid feature deployments, the operational simplicity of Elixir is a boon. We
touched on reduced need for K8s or sprawling microservices. Here we focus on specific ops
benefits:

Hot Code Upgrades: The BEAM allows loading new code into a running system without
stopping it (with some limitations and careful design). In practice, not every team uses
this for complex upgrades, but even without manual use of hot upgrades, the mere
ability underscores the platform’s focus on high availability. Some companies have
leveraged it for zero-downtime deploys of critical telecom systems. For a web app, you
can usually do rolling deploys across nodes for zero downtime, but BEAM gives the
option to do it in-place on a node as well . The takeaway is that Elixir apps can be
updated very frequently and reliably – great for quickly pushing out improvements or AI
model updates.

Self-Healing Systems: If a part of the system crashes (say an external API call returns
something unexpected and our process dies), the supervisor will restart that process
fresh. This can localize failures and recover automatically. For ops teams, this means
fewer 2 AM on-call incidents. In vibe-coded systems, by contrast, an unanticipated error
might crash an entire script or leave a system in a wedged state because there was no
watchdog. The supervised, let-it-crash approach ironically yields more uptime in practice,
because the system is designed to fail gracefully. WhatsApp’s achievement of 99.9%

af://n942

uptime on minimal infrastructure is often attributed to this Erlang philosophy
[HOFF2014].

Built-in Instrumentation: Elixir’s telemetry library provides a unified way to instrument
events (requests, DB queries, etc.) and collect metrics. Phoenix comes with a
LiveDashboard that can display performance stats, request logs, etc., live. This reduces
the overhead of integrating third-party monitoring tools for basic needs. It’s an ops
convenience: out of the box, you can see what your system is doing internally. An AI-
assisted dev might inadvertently introduce a performance regression, but telemetry
would let you catch a slow endpoint quickly in testing or staging by observing metrics.

Simpler Deployments: Many Elixir apps can be compiled to a single release (using Mix
releases) that bundles the Erlang runtime and all dependencies. Deploying that is often
as simple as copying a folder or container image and running the release – no need to
manage language runtimes on the target machines. This reduces configuration drift and
environment issues (“it worked on my machine, but not in prod”). In fast-moving
projects, having deterministic, containerized releases means you can deploy several
times a day with confidence.

To put it succinctly, Elixir allows a team to spend more time on product improvements and
less on firefighting and yak-shaving in the devops arena. That’s an enormous process
advantage. In an AI-driven world, we expect to iterate quickly (maybe continuously retrain
models or tweak prompts, etc.), so you want your engineering platform to keep up without
breaking. Elixir offers that stability under rapid change.

3. People and Team Factors
Technology choice isn’t just about machines – it’s about humans: how they collaborate, learn,
and stay motivated. In this section, we discuss why Elixir provides a people advantage,
touching on talent acquisition/retention, team morale, and cross-functional collaboration
(including non-technical stakeholders).

3.1 High-Signal Talent and Hiring Considerations

It’s true that the pool of Elixir developers is smaller than that of JavaScript or Python
developers. On the surface, this might seem like a disadvantage for a CTO choosing a stack.
However, the composition of the Elixir talent pool is quite unique and arguably
advantageous. Developers who gravitate to Elixir (or Erlang) tend to do so out of passion for
the craft of building reliable systems. As noted earlier, many are experienced engineers who
have grown frustrated with the limitations or chaos of more mainstream tools. They often
have backgrounds in Ruby, Python, or Java and were drawn to Elixir for its blend of elegance
and power. What this means is that hiring for Elixir can yield very high-signal candidates:

af://n955
af://n957

you’re less likely to get a random batch of résumé spam and more likely to attract engineers
who are both capable and intrinsically motivated by the work.

Multiple companies have reported that even though Elixir devs are fewer, they tend to ramp
up quickly and stick around. The blog points out that Elixir developers “tend to stay” and that
teams see “higher retention, stronger alignment, and less churn” . This aligns with data from
developer surveys: Elixir consistently ranks among the top most loved programming
languages in the world [HILAL2023]. For instance, Stack Overflow’s 2022 and 2023 surveys
showed Elixir in the top 5 (often right after Rust) in terms of developers who want to continue
using it vs those who dread it. A language that engineers enjoy is not just a perk – it has direct
business implications. Happy developers produce better work and are less likely to leave for
another job, reducing turnover costs. It also means that when using AI tools, these
developers will approach them with a mindset of using the AI to augment quality, not to
substitute sloppy coding. An engineer who loves Elixir’s clarity will likely prompt an LLM in a
way that yields clean, idiomatic Elixir, rather than just accepting the first output blindly. In
other words, they will uphold “make it right” ethos even with AI assistance.

From a hiring perspective, some CTOs worry that “if I choose Elixir, I won’t find developers.” In
reality, companies have navigated this by either training internally (e.g. cross-training some
experienced developers from other languages, which tends to be effective because Elixir’s
learning curve is not steep for those with FP or Ruby exposure) or by tapping into the
passionate Elixir community. While smaller, the community has strong hubs (ElixirForum,
annual conferences, etc.) where job postings often get enthusiastic responses. It’s also worth
noting that remote work has broadened the available talent – you can hire an Elixir developer
from anywhere, which mitigates the local pool issue.

In contrast, if you choose the most popular stack (say JavaScript/Node), you will indeed have
a larger candidate pool, but also a noisier one. Many junior devs or people with weak
fundamentals might claim proficiency, and you have to wade through that. There’s also the
risk of higher churn: JavaScript developers might jump to the next front-end framework hype;
Python developers might leave for a data science role, etc. Elixir developers, being fewer,
tend to have tighter camaraderie and loyalty to the ecosystem.

3.2 Team Size and Efficiency

Elixir enables small, cross-functional teams to deliver end-to-end features without as many
handoffs. Because one Elixir engineer can implement the front-end (with LiveView) and the
back-end logic and even some data processing task, you don’t necessarily need separate
specialists for each part of the stack. A full-stack Elixir engineer can cover what might take 2-3
people in a JavaScript + Python scenario (a front-end dev, a back-end dev, maybe a DevOps
or data pipeline dev). This isn’t to advocate for overstretching individuals, but rather to
highlight that Elixir’s unification of concerns can simplify team composition. In an AI-
augmented development environment, this pays dividends: the fewer people involved in a

af://n962

feedback loop, the faster it goes. A single developer (with their AI pair programmer) can build
a feature from UI to database without waiting on other team members, meaning the
iteration cycle is only gated by that developer’s own speed and the AI’s assistance.

Additionally, Elixir’s clarity and the fact it’s a BEAM language family means that any Elixir dev
can read and even interoperate with Erlang code (and some ecosystem libraries are Erlang).
There’s a generalist tendency which can be healthy – people think in terms of solving the
problem, not “my part vs your part.” When something goes wrong in production, an Elixir
engineer can debug across the whole stack (maybe an issue in Phoenix channels layer, or an
out-of-memory in a process) using the available tools. In contrast, in a microservice
architecture, it’s easy for teams to get into “not my problem” mindset for issues at
boundaries (“the front-end says the back-end API is slow; back-end says the DB is slow; ops
says the network is the issue”).

There’s also an argument to be made about communication overhead. Fred Brooks’
famous observation in The Mythical Man-Month is that adding people to a project can make it
later, due to the cost of communication. By enabling small teams to do more, Elixir indirectly
reduces the number of communication paths. This is not unique to Elixir – any highly
productive environment (Ruby on Rails had a similar effect in its heyday) can have this
benefit. But Elixir doubles down by also handling the scaling and concurrency – which Rails
apps often struggled with at high scale, forcing team expansion for optimizations – so you
don’t need to bring in separate performance engineers or SREs early on. A lean team can
likely scale an Elixir system quite far before needing extra help.

3.3 Culture of Quality and Maintainability

The Elixir community inherited a lot of culture from the Erlang community (which prioritizes
systems that run for years nonstop) and from the Ruby community (which values developer
happiness and elegant code). The result is a culture that is engineering-centric in the sense
of valuing good design, but also pragmatic and tool-oriented to make developers happy.
You see this in how libraries are written, how documentation is thorough, and how people
share knowledge.

In practical terms, if you’re building a team and choose Elixir, you’re signaling to potential
hires and current engineers that you care about doing things right. This can boost morale –
developers feel they are working with a “cool” and modern technology that isn’t just chosen
because “everyone else is doing it,” but because it’s genuinely better for the task. That
motivational aspect shouldn’t be underestimated. Many developers talk about a sense of joy
when programming in Elixir (commonly citing pattern matching, the pipe operator for clear
data flow, etc.). Happy developers tend to produce better code and have the energy to think
creatively, which is important in leveraging AI tools effectively. They will take the time to
refine an AI-suggested solution rather than feeling drudgery and accepting subpar code.

af://n966

On the people side, one might consider training and onboarding. Elixir’s syntax is friendly
(often described as a mix of Ruby’s readability with a dash of functional flavor). New team
members can become productive in Elixir in a matter of weeks, even if they haven’t used it
before – assuming they have some general programming experience. With AI assistance (like
GitHub Copilot or others) and resources like interactive Livebooks, learning is even faster.
There is an increasing amount of AI-assisted learning material for Elixir as well; for example,
some Livebook “smart cells” can help generate code from English descriptions, guided by
LLMs. So a non-Elixir expert could join a team and ramp up by using AI suggestions plus the
very consistent and readable project structure that frameworks like Phoenix impose.

Finally, a note on cross-functional collaboration: When explaining the system to product
managers, designers, or other stakeholders, it can be easier if the system is built in a way
that is conceptually clean. Elixir’s code often reads like a set of transformations and business
rules (especially with DSLs like in Ash for policies: e.g., an Ash policy might literally declare
“users can do X if condition Y”). This high-level clarity can sometimes allow non-engineers to
grasp the essence of the system’s logic. It’s not uncommon for product folks to sit with an
Elixir dev and read through a simple LiveView or context function and follow what’s
happening more easily than they would in a heavily object-oriented, side-effect-laden
codebase. It’s one more subtle benefit: transparency.

4. Elixir’s Alignment with AI-Assisted
Development

We’ve touched on this throughout, but let’s address directly: in a future where AI pair
programmers (like CoPilot, ChatGPT, etc.) are ubiquitous, why might Elixir be a particularly
good language for AI-assisted programming?

There are a few key reasons:

4.1 Code Clarity and Predictability

LLMs have an easier time generating and reasoning about code that is consistent and
unambiguous. Elixir’s syntax and semantics enforce a lot of consistency. For example, there’s
only one way to denote a function (no confusing overloading or multiple inheritance or
operator override weirdness). Data is immutable, so the model doesn’t have to keep track of
complex state mutations in its head; it can focus on transformations. Pattern matching
provides a form of self-documenting code – the function signature often tells you exactly the
shape of data it expects, which means an AI can use those clues to generate correct logic
inside. Contrast this with a language like JavaScript, where a function might take an object
whose shape isn’t clear without reading a lot of code or documentation. Or Python, where
types are dynamic – an AI might misjudge the type of a variable and produce wrong code

af://n972
af://n975

(unless type hints are heavily used). In Elixir, it’s common to destructure maps or structs in
pattern matches, so the model has that context up front.

Additionally, the absence of side effects (in most Elixir code) means the AI can more
confidently reorder or refactor code, because it doesn’t have to fear hidden ripple effects.
This was noted in the blog: “LLMs struggle with imperative codebases full of side effects, hidden
state, and indirection. Elixir code is composable, declarative, and inspectable.” . It’s easier to
automate because it’s closer to a pure function model – which is something computers can
deal with more readily.

A concrete example: suppose an LLM is asked to optimize a function in Elixir. If that function
is pure (no side effects) and clearly pattern-matched, the LLM can be quite bold in
restructuring it (perhaps tail-recursing it or converting it to an Enum/map pipeline) because it
“knows” what the function is supposed to do from its definition and there are no external
interactions. If the same request is made of an imperative function with loops and external
state, the LLM has to be extremely cautious and might make mistakes.

4.2 Smaller Surface Area for Models to Learn

Elixir, being a relatively small language in terms of keywords and concepts, provides a nice
signal-to-noise ratio for ML models. There’s essentially one main data structure concept
(the immutable term), with specific varieties (list, map, tuple, struct). Control flow is mostly
pattern matching and recursion, plus some higher-order functions. This is in contrast to, say,
C++ which has a vast surface of obscure features, or even Python which has many ways to do
something (list comprehensions, loops, functional tools, etc., plus a huge standard library).
The relatively compact core of Elixir means an AI can “master” the basics easily from the
training data it has. We can likely assume LLMs like GPT have seen a decent amount of Elixir
code (GitHub is full of it, and the community is vocal in writing posts, etc.), though nowhere
near as much as Python/JS. However, the constraint of the language might actually help
mitigate the smaller corpus: the model doesn’t have to figure out which of 10 ways you might
manage concurrency – there’s basically one (spawn processes or use Task/GenServer which
under the hood is spawn).

We saw earlier on the Elixir forum, a user expressed concern that LLMs might favor Python
simply because it’s more common, and the Ash framework author responded that with
proper prompt engineering (providing rules and examples), models can indeed produce
excellent Elixir code [DANIEL2025]. The fact that Ash’s team is actively working on LLM
development tooling for Elixir is a sign that aligning AI to Elixir is a priority and is feasible
[DANIEL2025]. For example, they mention providing usage-rules.md for packages that an AI
can reference [DANIEL2025], which essentially guides the model to write correct usage
patterns. This isn’t something you hear about in every community; it shows Elixir’s
community is forward-thinking about staying relevant in the AI era.

af://n979

4.3 Reducing the Blast Radius of AI Mistakes

When AI assistance does make a mistake, Elixir’s characteristics often localize the damage. A
bug will usually cause either a pattern match failure (which crashes that process but not the
whole system, thanks to supervision) or a test failure. It won’t corrupt some global state that
then leads to far downstream, hard-to-trace issues. This is a people advantage: it keeps the AI
as a useful collaborator, not a dangerous loose cannon. In more brittle environments, an AI
hallucination (like using an incorrect API call or misunderstanding a concurrency primitive)
could introduce subtle memory leaks or race conditions that only manifest under production
load. While you could still write inefficient Elixir (e.g., an AI might accidentally introduce a
naive recursive function that is too slow), those issues are easier to detect and fix with Elixir’s
tooling.

Moreover, since Elixir encourages writing self-documenting tests (like doctests, where
examples in the documentation are actual tests), an AI can use those as guidance. If a
codebase has good documentation and typespecs (Elixir has optional type annotations and
tools like Dialyzer for static analysis), the AI will have a richer context to draw from. Many
mature Elixir libraries include specs and docs right in the source. When the AI is asked to
modify or extend those, it’s less likely to violate the intended contract because it “sees” it.

4.4 AI Assisting Non-Elixir Experts

Another angle is how AI can help broaden Elixir adoption. Suppose a team is mostly
experienced in Python but is considering Elixir for the reasons in this paper. In the past, the
learning curve or lack of familiarity might deter them. Today, an AI assistant can help a
Python dev by, for example, translating snippets of Python logic into Elixir, or by suggesting
Elixir idioms as they code (like “Hey, I see you writing a loop, in Elixir you might use
Enum.reduce”). This real-time guidance can accelerate onboarding. The AI basically acts as an
ever-present mentor with knowledge of community best practices (assuming it’s trained on
public code). So the cost of moving to Elixir is lower with AI assistance in play.

We should also acknowledge the flip side: training data bias. LLMs have seen more Python/JS,
so out-of-the-box, they might produce those more fluently. But as one engineer pointed out,
if AI models never improve beyond parroting popular tools, we wouldn’t be moving forward
anyway . And indeed, the state-of-the-art is evolving – models fine-tuned for coding do take
into account quality, not just frequency. Also, a motivated team can fine-tune or customize AI
models with Elixir-focused knowledge (for instance, feed it Elixir guides and common
patterns). Given the size of modern models, the gap is closing.

One more concrete thing: with Elixir, a lot of repetitive boilerplate is not needed (unlike
setting up verbose configurations in some frameworks). This means the AI’s role shifts to
more meaningful tasks, like generating actual business logic or algorithmic code, rather than
churning out endless ceremony. Developers can focus their prompting on real problems

af://n982
af://n985

(“Generate a function to reconcile these two datasets under certain rules”) instead of “Write
the 10 lines of config to connect library A to library B.” This makes the human-AI collaboration
more effective and satisfying.

5. Vibe Coding vs. Elixir’s Disciplined Approach
We’ve indirectly contrasted these throughout, but let’s tackle head-on the trendy concept of
vibe coding – using AI to build software quickly by describing features in plain English – and
why Elixir provides a healthier alternative or complement to this approach.

Vibe coding platforms like Lovable.dev and Apidog promise a world where you can simply
chat with an AI to get a full application generated [STEPHANE2025]. For example, Lovable’s
team demonstrated building an event management app in an hour by just describing it, with
the AI handling database schema, authentication, etc., even debugging errors on the fly
[STEPHANE2025]. It’s an impressive glimpse of the future: non-developers or small startups
could spin up prototypes at a speed unheard of before. In fact, Y Combinator reported that
by Winter 2025, 25% of new startups in their batch had codebases that were 95% AI-
generated – essentially vibe-coded. This highlights that vibe coding is not just a meme; it’s
happening.

The appeal of vibe coding is essentially “make it work (now) and don’t worry about the rest.”
When you’re chasing a quick validation of an idea, that might be fine. But most software
outlives the prototype stage, and that’s where the trouble begins. Code that was slapped
together by an AI might lack proper error handling, security considerations, performance
optimizations, and consistency. The Lovable blog itself notes concerns about code quality,
security, and maintainability in AI-generated code [STEPHANE2025]. They claim to mitigate it
within their platform (with validations and feedback loops), but the jury is out on how well
that scales to complex real-world scenarios.

Elixir’s philosophy, in contrast, instills maintainability and quality from the start. It’s the
difference between throwing ingredients together haphazardly (hoping the AI chef doesn’t
miss salt or accidentally swap sugar for salt) versus following a time-tested recipe that
guarantees a decent meal every time. With Elixir, you are following known good recipes –
OTP patterns, Phoenix conventions, etc. That discipline might feel slower initially than vibe
coding, but it prevents a lot of costly rework.

To be fair, vibe coding isn’t “evil.” As Simon Willison argues, it can be fun and even useful for
learning or low-stakes projects [WILLISON2025]. It opens programming to a broader
audience (which is fantastic). However, Simon draws a crucial line: if you review and
understand the AI-written code, that’s just AI-assisted programming, not vibe coding per se
[WILLISON2025] . True vibe coding is when you don’t review or fully comprehend it. And he
and Karpathy agree that this is only acceptable in “low stakes” scenarios where bugs won’t

af://n990

cause serious harm [WILLISON2025] [WIKI2025]. In any professional software intended for
real users or critical data, someone has to ensure the correctness and security of the code.

Elixir can actually embrace the positive parts of vibe coding (speed, high-level expression)
without the negatives. How? By using AI to assist within the Elixir framework. For example, a
future Lovable-like tool could target Elixir, where a user describes an app and the AI
generates an Elixir Phoenix+Ash project. The difference is, because Elixir is so structured, the
code generated might be much closer to production-ready (it will have supervision trees,
proper context modules, etc., because those are required by the framework). The AI would
effectively be filling in a scaffold that enforces good practices. We already see steps in this
direction: the Ash framework’s team working on LLM guides is essentially trying to ensure
that if an AI writes Ash code, it does so correctly [DANIEL2025]. Imagine an AI that generates
resource definitions and policies for you – since Ash will handle the heavy lifting, the chance
of something egregiously wrong is smaller.

Shortcomings of prototyping-first workflows (be it human- or AI-generated prototypes):
They accrue technical debt rapidly. Decisions that were fine for a prototype (e.g., using an
in-memory store, or not handling certain edge cases) become landmines in production. Vibe
coding can exacerbate this by making it so easy to add features that one might skip designing
a proper data model or ignore performance implications (“let the AI just add the feature, it
works on my dev machine with 5 sample records…”). Elixir’s counterpoint is that it nudges
you toward sound engineering. It’s actually hard to write an Elixir/Phoenix app that
completely ignores structure – you’d have to fight the framework. As a result, an MVP built in
Elixir tends to be closer to a maintainable final product. You make it work in Elixir, but in doing
so you’ve inadvertently made it right in many respects because of the defaults. And making it
fast is often just a matter of adding more load or minor tuning, not redesigning everything.

Let’s consider a concrete vibe vs discipline scenario: Suppose you need to build a SaaS
application with user accounts, an admin panel, and some real-time updates. A vibe coder on
Lovable might describe it and get a working app quickly – it uses a SQL database, has an
authentication flow, etc. But later, they discover that the AI chose a poor data schema, there
are N+1 query issues causing slow pages, and the admin panel has some security oversight
(maybe it didn’t thoroughly check permissions). The original AI output might not easily adapt
to these changes; you might have to dig through code you didn’t write to fix it, basically
treating the AI’s output as legacy code from day one. On the other hand, an Elixir developer
might use Phoenix generators (for accounts) and Ash for admin resources. It might take a bit
longer than one hour, but the resulting code will have proper Ecto schemas with explicit
relationships (preventing N+1 queries via preloading), and the admin panel via Ash will have
a defined policy system from the start. When requirements change, the dev isn’t scared to
modify the code because they understand it and it follows clear patterns.

In essence, Elixir aligns with the “make it right” philosophy, whereas vibe coding in its
extreme form risks skipping that. For long-lived software, making it right (and keeping it
right) is not optional. This doesn’t mean AI is incompatible with Elixir – quite the opposite, AI
can supercharge Elixir development – but the culture around how it’s used should be
different. Use AI to speed up routine tasks, to explore solutions, even to prototype pieces,
but always with the engineering mindset that the code must be reviewed, tested, and fit into
a reliable architecture. Elixir devs are, by training, less likely to “accept all without reading
diffs” – it’s just not in the ethos.

5.1 Comparing Platforms: Lovable vs Apidog vs Elixir

To provide a brief comparison: Lovable.dev is trying to be a one-stop vibe coding
environment (with a proprietary stack behind the scenes, it abstracts away the code by
design). Apidog takes a slightly different approach, focusing on allowing AI assistants to
interface with your API documentation and existing code (they mention an “MCP Server” that
links an AI to your API docs) . This suggests Apidog is about improving the quality of AI-
generated code by grounding it in known specs – a step toward responsible AI coding. Both
of these are early products and they mostly target mainstream languages because of market
share.

Elixir doesn’t have a direct equivalent product as of writing, but if we imagine one: it could
leverage the strong conventions of Phoenix and Ash. It might allow a user to say “Create a
LiveView for a blog post editor with live preview” and the AI could generate the LiveView
module, template, and maybe an Ash resource for posts. Because Phoenix has a clear way to
do such things, the AI output would likely need just minor tweaking. In Node or Python, there
are a dozen libraries or approaches to choose from for each piece, which an AI might fumble.
Apidog’s concept of using docs to guide AI could work brilliantly in Elixir given the excellent
hexdocs available for most libraries (the AI could fetch Phoenix’s guide on LiveView and
follow it step by step).

Ultimately, vibe coding as an idea pushes the boundaries of how we think about
programming – it emphasizes declarative intent (“say what you want, not how to do it”).
Interestingly, this aligns philosophically with Elixir frameworks: Ash is declarative (you say
what your data model is, not how to implement every detail), LiveView is declarative in UI
(you describe the state -> UI mapping, not manage DOM events manually). So one could
argue Elixir is conceptually ready for vibe coding done right. It provides a safe playground for
AI to operate, where the outcome is constrained by frameworks to be sound.

When we critique vibe coding from the Elixir perspective, it’s not to dismiss the power of AI,
but to stress that foundation matters. If you build on sand, faster construction just means a
bigger collapse later. Elixir is like building on rock – even if you use power tools (AI) to build
faster, you still end up with a solid structure. As Karpathy joked in his tweet, “it mostly works”
and is “amusing” for quick projects [WIKI2025], but he implicitly knew better than to trust it

af://n1000

for anything serious. An engineering leader should draw the same line: use these AI coding
capabilities to augment a strong platform, not to replace sound engineering. Elixir offers that
strong platform.

Conclusion
Modern software engineering is being transformed by AI, but the core principles of building
reliable, maintainable, high-performance systems remain as crucial as ever. Elixir shines in
this regard: it enables teams to harness massive concurrency and fault-tolerance by default,
collapse complex stacks into simpler cohesive units, and maintain a high level of code clarity
and consistency – all of which complement and enhance AI-assisted development rather than
being overridden by it.

When comparing to mainstream stacks, we find that:

Elixir vs Node.js: Elixir provides true multi-core parallelism and no-callback-hell
concurrency, leading to simpler code for the same scalability. You don’t need a separate
front-end framework for interactivity (LiveView covers it), whereas Node often implies a
split between server and client logic. The result is less code and fewer integration points
– ideal for AI to assist with, since the context it needs to consider is all in one place.
Node’s advantage of quick prototyping fades when AI can help generate boilerplate, so
the pendulum swings toward Elixir’s runtime benefits.

Elixir vs Python: Python’s ease is matched by Elixir’s elegant syntax, and Elixir far
outperforms Python in concurrent workloads (no GIL limitations). For AI/ML tasks,
Python still has more libraries, but Elixir’s Nx is closing the gap and even introduces new
paradigms for deploying models as part of an app. If AI helps to write your code, the
dynamic typing of Python can become a risk (harder to verify AI’s output); Elixir’s pattern
matching and dialyzer specs offer a safety net that’s very helpful. Also, Python typically
needs external tools for reliability (Celery for jobs, etc.), which Elixir doesn’t – meaning
an AI working in Elixir has fewer pieces to juggle.

Elixir vs Go: Go shares some similarities (simple syntax, concurrency as a first-class
concept). Go might have an edge in raw CPU-bound performance for certain tasks and a
larger ecosystem for things like cloud tooling. However, Elixir’s supervised processes
and immutability give it a robustness and low bug rate that Go’s manual error handling
and mutable state can’t guarantee. An AI coding in Go might inadvertently ignore a
critical if err != nil check; in Elixir, errors bubble up in a controlled way to supervisors.
Also, the developer experience in Elixir (with Live reload, interactive shell, meta-
programming for DSLs like Ash) is arguably superior – which again means happier
developers and better use of AI tools.

af://n1006

In the end, Elixir represents a balanced, future-proof choice. It was designed to solve hard
problems of scalability and reliability that are incredibly relevant as software scales to serve
global audiences and as backends need to orchestrate AI computations potentially involving
heavy concurrency. It encourages doing things right without making it overly difficult to get
started (thanks to friendly syntax and frameworks). It’s akin to a high-performance vehicle
that’s also safe and comfortable to drive – and now we have AI navigation assistants coming
into the picture, it makes sense to be in a car that will respond predictably and not fly off the
handle.

For technical leaders, adopting Elixir can mean the difference between having a codebase
that is a constant source of headaches and fire drills, versus one that hums along and lets
you focus on delivering value (and incorporating new AI-driven features) rather than fighting
fires. This paper has provided evidence and examples that Elixir’s gains in scalability,
maintainability, and developer productivity are not just theoretical – they’ve been proven in
production by companies like WhatsApp and Discord, and they’re being amplified by new
developments in the ecosystem.

As AI becomes part of every developer’s toolkit, choosing a stack that maximizes what
developers (human or AI) can do and minimizes what they have to worry about is key. Elixir is
exactly that kind of stack: high-leverage, low-drama. It leverages powerful abstractions and
a rock-solid VM to let a small team achieve outsized results – which is only compounded
when that team is further boosted by AI assistance.

In conclusion, Elixir is more than just a programming language – it’s a platform and a
philosophy for building modern software that works, is right, and is fast. It stands out as a
superior choice for those who want to embrace AI in development without sacrificing
engineering discipline. With Elixir, you are well-positioned to ride the wave of AI-fueled
innovation while keeping your systems robust, your team productive, and your stakeholders
happy.

References
[HOFF2014]: [High Scalability] Todd Hoff, “How WhatsApp Grew to Nearly 500 Million Users,
11,000 cores, and 70 Million Messages a Second,” HighScalability.com, Mar. 2014. [Online].
Available: https://highscalability.com/how-whatsapp-grew-to-nearly-500-million-users-11000-
cores-an/

af://n1023
https://highscalability.com/how-whatsapp-grew-to-nearly-500-million-users-11000-cores-an/

[RENNIE2015]: Gary Rennie, “The Road to 2 Million Websocket Connections in Phoenix,”
Phoenix Framework Blog, Nov. 2015. [Online]. Available: https://phoenixframework.org/blog/th
e-road-to-2-million-websocket-connections

[VISHNEVSKIY2017]: Stanislav Vishnevskiy, “How Discord Scaled Elixir to 5,000,000 Concurrent
Users,” Discord Engineering Blog, July 2017. [Online]. Available: https://discord.com/blog/how-d
iscord-scaled-elixir-to-5-000-000-concurrent-users

[HILAL2023]: Ella Hilal, “Comparing tag trends with our Most Loved programming languages,”
Stack Overflow Blog, Jan. 26, 2023. [Online]. Available: https://stackoverflow.blog/2023/01/26/c
omparing-tag-trends-with-our-most-loved-programming-languages/

[STEPHANE2025]: Stephane (Lovable), “Vibe Coding: The Future of Software Development or
Just a Trend?” Lovable.dev Blog, Mar. 3, 2025. [Online]. Available: https://lovable.dev/blog/what
-is-vibe-coding

[WIKI2025]: Wikipedia, “Vibe coding,” last edited Jul. 2025. [Online]. Available: https://en.wikipe
dia.org/wiki/Vibe_coding

[WILLISON2025]: Simon Willison, “Not all AI-assisted programming is vibe coding (but vibe
coding rocks),” SimonWillison.net Blog, Mar. 19, 2025. [Online]. Available: https://simonwillison.
net/2025/Mar/19/vibe-coding/

[DANIEL2025]: Zach Daniel, “Ash Framework: Official LLM development tooling and
guidance,” Elixir Forum, May 22, 2025. [Online]. Available: https://elixirforum.com/t/ash-frame
work-official-llm-development-tooling-and-guidance/70980

[LE2025]: Rebecca Le and Zach Daniel, Ash Framework: Create Declarative Elixir Web Apps (Beta
book), Pragmatic Programmers, Oct. 2025.

[BATRA2025]: Yash Batra, “WhatsApp’s Billion-User Database: How FreeBSD and Erlang
Handled the Impossible,” Medium.com, May 30, 2025. [Online]. Available: https://medium.co
m/@yashbatra11111/whatsapps-billion-user-database-how-freebsd-and-erlang-handled-the-i
mpossible-5e699f7f078d

https://phoenixframework.org/blog/the-road-to-2-million-websocket-connections
https://discord.com/blog/how-discord-scaled-elixir-to-5-000-000-concurrent-users
https://stackoverflow.blog/2023/01/26/comparing-tag-trends-with-our-most-loved-programming-languages/
https://lovable.dev/blog/what-is-vibe-coding
https://en.wikipedia.org/wiki/Vibe_coding
https://simonwillison.net/2025/Mar/19/vibe-coding/
https://elixirforum.com/t/ash-framework-official-llm-development-tooling-and-guidance/70980
https://medium.com/@yashbatra11111/whatsapps-billion-user-database-how-freebsd-and-erlang-handled-the-impossible-5e699f7f078d

