MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training
The research paper titled "MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training" discusses the development and implications of high-performance Multimodal Large Language Models (MLLMs). It highlights the critical aspects of architecture and data selection, demonstrating how a mix of different types of data can lead to state-of-the-art results in few-shot learning across various benchmarks. The study also points out the significant impact of image encoders on model performance, suggesting that the design of the vision-language connector is less crucial. This work, published by Brandon McKinzie along with 31 other authors, introduces MM1, a family of up to 30B parameter models that excel in pre-training metrics and competitive performance in multimodal benchmarks.
Was this useful?